课题组招收:化学、化学工程、材料科学方向的硕士、博士生
热忱欢迎高分子、有机、功能材料研究的学子报考本题组的博士和硕士,成为我们大家庭的一份子!!!
付国东 教授 智能材料课题组
简历:
1992-1996年,北京化工大学,学士学位
1996-1999年,北京化工大学高分子材料专业,硕士学位
1999-2002年,石油化工科学研究院
2002-2005年,新加坡国立大学化工系,博士学位(新加坡总统奖)
2006年-至今,365wm完美体育下载,教授
2009-2010年 洪堡学者 Bayreuth University
获奖及荣誉:
并于2008年入选国家新世纪优秀人才资助计划。2009年获得德国洪堡(AvH)基金会资助,以洪堡学者的身份在德国拜罗伊特大学(Bayreuth University)进行生物基半导体聚合物制备及薄膜太阳能电池开发研究。
在光热智能材料及功能高分子合成设计及应用方面做了大量有特色的工作,目前在国际高分子材料的著名期刊,如Progress in Polymer Science, Advanced Materials,Angew. Chem. Inter. Ed.,和Adv. Func. Mater.等上以第一作者和通讯作者发表SCI文章100余篇,授权国家发明专利20余项,并受邀在国外高分子专业图书上发表8章节。2009年发表在ACS Applied Materials & Interface 的关于智能纳米纤维制备和应用的两篇论文分别被评为Most cited and Most Read文章。2008年发表在J. Membr. Sci.的论文被评为2008年“百篇中国最有影响的国际学术论文”之一。2010英国皇家化学学会Nanoscale邀其以 feature article 的方式系统介绍了其课题组在功能纳米纤维制备方面的工作。2018年发表在Polymer杂志获得冯新德高分子论文奖。并担任本科生课程“材料与制药工程导论”和研究生课程“高等高分子化学与物理”。
主要研究方向:
发展新型聚合方法,基于分子合成设计,精确设计和控制凝胶网络的分子空间结构及凝胶功能化设计,制备规整高强度水凝胶、仿生智能凝胶网络、自愈合多功能凝胶。
图1基于分子设计合成规整高强度水凝胶
图2基于大分子模板分子设计合成自愈合多功能凝胶
图3导电自修复水凝胶材料的设计
光致变色水凝胶。
基于在太阳光或紫外光的照射下,会发生颜色的变化。可将其与普通玻璃进行“三明治”般复合,做成气候控制调光玻璃,具有感受光照强弱,并根据变化自主调节颜色深浅的能力。夏季光照充足,紫外线强度高,玻璃颜色自动加深,阻挡热量进入;冬季紫外线强度低,玻璃颜色变化较浅,增加光热的进入,提高了室内光线的舒适感。在建筑用玻璃、车用玻璃等行业具有很大的潜在价值。
图4光致变色水凝胶材料的设计
各向异性水凝胶。
肌肉组织是一种肌纤维包裹结缔组织,具有高度各向异性的生物凝胶,其呈现各向异性的力学特性,具有允许离子和小分子定向移动有序的通道结构。骨骼肌组织,如图5所示,这样的三维各向异性结构使其展现了只能特定方向物理机械及信号传导的各向异性的性能。水凝胶是一种含水量丰富的聚合物网络结构,具有与生物组织极为相似的软物质材料。传统的水凝胶的高分子网络交联点的
可控性和随机性导致其存在大量的结构缺陷,三维结构各向同性,因而三维各向物理机械性能没有差别。传统凝胶结构与性能的各向同性限制了其功能,例如:1)离子输运不能总是沿着距离最短的路线进行,且离子的输运具有各向同性的特点,因此制得的凝胶电导率不高;2)由于链段无序排列及单一化,其溶胀呈各向同性,因此不具备定向溶胀的特性;3)由于高分子链无序排列,凝胶力学性能较差,在当前器件生产中普遍存在器件接口在应力作用下因脱层而失效和力学性能变差造成器件报废,因而限制了传统高分子水凝胶在可穿戴电子、仿生功能材料领域的应用。为了实现凝胶在可穿戴电子、仿生功能材料领域应用,开发出三维方向各向异性,更接近生物组织的水凝胶尤为重要。
图5.骨骼肌结构图
图6 三维各向异性功能化凝胶结构示意图
科研项目:
先后主持国家自然科学基金、江苏省自然科学基金、校内基金等十余项。
近五年主持或参加的项目:
1. “基于大分子设计与合成制备具有三维各向异性功能水凝胶的研究”批准号:52073059 国家自然基金面上项目(2021.01-2023.12)
2.“光致变色隐形眼镜的研制及其产业化”,2018.07-2021.06
近年发表论文:
2020年
(1) W. Ma, Y. Ding, M Zhang, S. Gao, Y. Li, C. Huang*, G. Fu*. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation[J]. Journal of hazardous materials, 2020, 384: 121476.
(2) Q. Jia, Z. Li, C. Guo, X. Huang, M. Kang, Y. Song, L. He, N. Zhou, M. Wang, Z. Zhang*, G. Fu*, M. Du*. PEGMA-modified bimetallic NiCo Prussian blue analogue doped with Tb (III) ions: Efficiently pH-responsive and controlled release system for anticancer drug[J]. Chemical Engineering Journal, 2020, 389: 124468.
(3) W. Ma, Y. Li, S. Gao, J. Cui, Q. Qu, Y. Wang, C. Huang*, G. Fu*. Self-Healing and Superwettable Nanofibrous Membranes with Excellent Stability toward Multifunctional Applications in Water Purification[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23644-23654.
(4) W. Ma, Y. Li, M. Zhang, S. Gao, J. Cui, C. Huang*, G. Fu*. Biomimetic durable multifunctional self-cleaning nanofibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34999-35010.
(5) M. Kang, Z, Li, M. Hu, O. Oderinde, B. Hu, L. He, M. Wang, G. Fu*, Z. Zhang*, M. Du*. Bimetallic MnCo oxide nanohybrids prepared from Prussian blue analogue for application as impedimetric aptasensor carrier to detect myoglobin[J]. Chemical Engineering Journal, 2020: 125117.
2019年
[1] O. Oderinde, M. Kang, M. Kalulu, F. Yao, G. Fu, Facile synthesis and study of the photochromic properties of deep eutectic solvent-templated cuboctahedral-WO3/MoO3 nanocomposites, Superlattices and Microstructures 125 (2019) 103-112.
[2] W. Ma, M. Zhang, Z. Liu, M. Kang, C. Huang, G. Fu, Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation, Journal of Membrane Science 570 (2019) 303-313.
[3] M. Kang, O. Oderinde, S. Liu, Q. Huang, W. Ma, F. Yao, G. Fu, Characterization of Xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion, Carbohydrate Polymers 203 (2019) 139-147.
2018年
[4] L. Pan, S. Liu, X. Zhang, O. Oderinde, F. Yao, G. Fu, Optimization method for blue Sr2MgSi2O7:Eu2+, Dy3+ phosphors produced by microwave synthesis route, Journal of Alloys and Compounds 737 (2018) 39-45.
[5] L. Pan, S. Liu, O. Oderinde, K. Li, F. Yao, G. Fu, Facile fabrication of graphene-based aerogel with rare earth metal oxide for water purification, Applied Surface Science 427 (2018) 779-786.
[6] O. Oderinde, S. Liu, K. Li, M. Kang, H. Imtiaz, F. Yao, G. Fu, Multifaceted polymeric materials in three-dimensional processing (3DP) technologies: Current progress and prospects, Polymers for Advanced Technologies 29 (2018) 1586-1602.
[7] W. Ma, M. Zhang, Z. Liu, C. Huang, G. Fu, Nature- inspired creation of a robust free- standing electrospun nanofibrous membrane for efficient oil- water separation, Environmental Science-Nano 5 (2018) 2909-2920.
[8] S. Liu, O. Oderinde, I. Hussain, F. Yao, G. Fu, Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties, Polymer 144 (2018) 111-120.
[9] S. Liu, K. Li, I. Hussain, O. Oderinde, F. Yao, J. Zhang, G. Fu, A Conductive Self-Healing Double Network Hydrogel with Toughness and Force Sensitivity, Chemistry-a European Journal 24 (2018) 6632-6638.
[10] S. Liu, M. Kang, K. Li, F. Yao, O. Oderinde, G. Fu, L. Xu, Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels, Chemical Engineering Journal 334 (2018) 2222-2230.
[11] M. Kang, O. Oderinde, Y. Deng, S. Liu, F. Yao, G. Fu, Characterization and study of luminescence enhancement behaviour of alginate-based hydrogels, New Journal of Chemistry 42 (2018) 17486-17491.
[12] M. Kang, S. Liu, O. Oderinde, F. Yao, G. Fu, Z. Zhang, Template method for dual network self-healing hydrogel with conductive property, Materials & Design 148 (2018) 96-103.
[13] I. Hussain, S.M. Sayed, S. Liu, F. Yao, O. Oderinde, G. Fu, Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanical properties via metal-ligand bond interactions, European Polymer Journal 100 (2018) 219-227.
[14] I. Hussain, S.M. Sayed, S. Liu, O. Oderinde, F. Yao, G. Fu, Glycogen-based self-healing hydrogels with ultra-stretchable, flexible, and enhanced mechanical properties via sacrificial bond interactions, International Journal of Biological Macromolecules 117 (2018) 648-658.
[15] I. Hussain, S.M. Sayed, S. Liu, O. Oderinde, M. Kang, F. Yao, G. Fu, Enhancing the mechanical properties and self-healing efficiency of hydroxyethyl cellulose-based conductive hydrogels via supramolecular interactions, European Polymer Journal 105 (2018) 85-94.
[16] I. Hussain, S.M. Sayed, G. Fu, Facile and cost-effective synthesis of glycogen-based conductive hydrogels with extremely flexible, excellent self-healing and tunable mechanical properties, International Journal of Biological Macromolecules 118 (2018) 1463-1469.
[17] Y. Deng, I. Hussain, M. Kang, K. Li, F. Yao, S. Liu, G. Fu, Self-recoverable and mechanical-reinforced hydrogel based on hydrophobic interaction with self-healable and conductive properties, Chemical Engineering Journal 353 (2018) 900-910.
2017年
[18] H. Wang, S. Liu, A. Zhang, K. Li, O. Oderinde, F. Yao, G. Fu, Zinc ion-induced formation of hierarchical N-succinyl chitosan film, Journal of Applied Polymer Science 134 (2017).
[19] S. Liu, F. Yao, O. Oderinde, Z. Zhang, G. Fu, Green synthesis of oriented xanthan gum-graphene oxide hybrid aerogels for water purification, Carbohydrate Polymers 174 (2017) 392-399.
[20] S. Liu, F. Yao, O. Oderinde, K. Li, H. Wang, Z. Zhang, G. Fu, Zinc ions enhanced nacre-like chitosan/graphene oxide composite film with superior mechanical and shape memory properties, Chemical Engineering Journal 321 (2017) 502-509.
[21] S. Liu, F. Yao, M. Kang, S. Zhao, Q. Huang, G. Fu, Hierarchical xanthan gum/graphene oxide nanocomposite film induced by ferric ions coordination, Materials & Design 113 (2017) 232-239.
[22] S. Liu, J. Ling, K. Li, F. Yao, O. Oderinde, Z. Zhang, G. Fu, Bio-inspired and lanthanide-induced hierarchical sodium alginate/graphene oxide composite paper with enhanced physicochemical properties, Composites Science and Technology 145 (2017) 62-70.
[23] S. Liu, K. Li, F. Yao, L. Xu, G. Fu, Lanthanide ions-induced formation of hierarchical and transparent polysaccharide hybrid films, Carbohydrate Polymers 163 (2017) 28-33.
[24] S. Liu, M. Dong, Z. Zhang, G. Fu, High elasticity, strength, and biocompatible amphiphilic hydrogel via click chemistry and ferric ion coordination, Polymers for Advanced Technologies 28 (2017) 1065-1070.
[25] K. Li, C. Zhou, S. Liu, F. Yao, G. Fu, L. Xu, Preparation of mechanically-tough and thermo-responsive polyurethanepoly(ethylene glycol) hydrogels, Reactive & Functional Polymers 117 (2017) 81-88.
[26] Q. Huang, S. Liu, K. Li, I. Hussain, F. Yao, G. Fu, Sodium Alginate/Carboxyl-Functionalized Graphene Composite Hydrogel Via Neodymium Ions Coordination, Journal of Materials Science & Technology 33 (2017) 821-826.
2016年
[27] C. Zhou, V.X. Truong, Y. Qu, T. Lithgow, G. Fu, J.S. Forsythe, Antibacterial poly(ethylene glycol) hydrogels from combined epoxy-amine and thiol-ene click reaction, Journal of Polymer Science Part a-Polymer Chemistry 54 (2016) 656-667.
[28] Z. Sun, S. Liu, K. Li, L. Tan, L. Cen, G. Fu, Well-defined and biocompatible hydrogels with toughening and reversible photoresponsive properties, Soft Matter 12 (2016) 2192-2199.
[29] S. Liu, J. Ling, K. Li, F. Yao, O. Oderinde, Z. Zhang, G. Fu, Hierarchical alginate biopolymer papers produced via lanthanide ion coordination, Rsc Advances 6 (2016) 63171-63177.
[30] S. Liu, M. Kang, I. Hussain, K. Li, F. Yao, G. Fu, High mechanical strength and stability of alginate hydrogel induced by neodymium ions coordination, Polymer Degradation and Stability 133 (2016) 1-7.
[31] M.-j. Dong, S.-l. Liu, L.-h. Tan, L. Cen, G.-d. Fu, Hydrogels of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks, Chinese Journal of Polymer Science 34 (2016) 637-648.
[32] J. Ding, C. Zhou, K. Li, A. Zhang, F. Yao, L. Xu, G. Fu, Preparation of well-defined fibrous hydrogels via electrospinning and in situ click chemistry, Rsc Advances 6 (2016) 27871-27878.
5年以外的代表性论文
2. Guo-Dong Fu*, Hua Jiang, Fang Yao, Li-Qun Xu, J, (*) Preparation of Fluorescent Organometallic Porphyrin Complex Nanogels of Controlled Molecular Structure via Reverse-Emulsion Click Chemistry., Macromolecular Rapid Communications, 2012.9.26, 33(18): 1523~1527
3. Fu, GD; Li, GL; Neoh, KG; Kang, ET, (*) Hollow polymeric nanostructures-Synthesis, morphology and function, Progress in Polymer Science, 2011.1, 36(1): 127~167
4. Yao, F; Xu, LQ; Fu, GD; Lin, BP, (*) Sliding-Graft Interpenetrating Polymer Networks from Simultaneous Click Chemistry and Atom Transfer Radical Polymerization, Macromolecules, 2010.12.14, 43(23): 9761~9770
5. Xu, LQ; Yao, F; Fu, GD; Kang, ET, (*) Interpenetrating Network Hydrogels via Simultaneous Click Chemistry and Atom Transfer Radical Polymerization, Biomacromolecules, 2010.7.12, 11(7): 1810~1817
6. Fu, GD; Zhao, JP; Sun, YM; Kang, ET; Neoh, KG, (*) Conductive hollow
nanospheres of polyaniline via surface-initiated atom transfer radical polymerization of 4-vinylaniline and oxidative graft copolymerization of aniline, Macromolecules, 2007.3.20, 40(6): 2271~2275
7. Cai, QJ; Fu, GD; Zhu, FR; Kang, ET; Neoh, KG, (*) GaAs-polymer hybrids formed by surface-initiated atom-transfer radical polymerization of methyl methacrylate, Angewandte Chemie International Edition, 2005, 44(7): 1104~1107
8. Fu, GD; Yuan, ZL; Kang, ET; Neoh, KG; Lai, DM; Huan, ACH, (*) Nanoporous ultra-low-dielectric-constant fluoropolymer films via selective UV decomposition of poly(pentafluorostyrene)-block-poly (methyl methacrylate) copolymers prepared using atom transfer radical polymerization, Advanced Functional Materials, 2005.2, 15(2): 315~322
9. Fu, GD; Shang, ZH; Hong, L; Kang, ET; Neoh, KG, (*) Nanoporous, ultralow-dielectric-constant fluoropolymer films from agglomerated and crosslinked hollow nanospheres of poly(pentafluorostyrene)-block-poly(divinylbenzene), Advanced Materials, 2005 .11.4, 17(21): 2622~2626
10. Fu, GD; Zhang, Y; Kang, ET; Neoh, KG, (*) Nanoporous ultra-low-kappa fluoropolymer composite films via plasma polymerization of allylpentafluorobenzene and magnetron sputtering of poly(tetrafluoroethylene), Advanced Materials, 2004.5.17, 16(9-10): 839~842
招生方向:博士(材料科学与工程、有机功能材料),硕士(化学、化学工程)
欢迎热忱高分子、有机、功能材料研究的学子报考付国东课题组的博士和硕士,成为我们大家庭的一份子。